
Software Testing Plan

Student Code Online Review and Evaluation
(2.0)

S.C.O.R.E. (2.0) aims to enhance and extend the original S.C.O.R.E. application.
Adding functionality in server connections, grading with rubrics, and cheat detections

are all intentions to deploy the system into CSE classrooms.

Team Members

Dorothy Ammons - dammons2022@my.fit.edu
Patrick Kelly - pkelly2022@my.fit.edu
Shamik Bera - sbera2022@my.fit.edu

Rak Alsharif - ralsharif2021@my.fit.edu

Faculty Advisor and Client

Raghuveer Mohan

November 23, 2025

mailto:dammons2022@my.fit.edu
mailto:pkelly2022@my.fit.edu
mailto:sbera2022@my.fit.edu
mailto:ralsharif2021@my.fit.edu

Table of Contents

Table of contents - 1

1. Introduction

2. Test Plan

3. Functional Test

3.a Import Rosters

​ 3.b Export Grades

 3.c MOSS Similarity Detection

 3.d AI Detection

 3.e Custom Rubrics

4. User Test

4.a HTTPS Connection

4.a.1 Professor

4.a.2 Student

4.b Web App

4.b.1 Professor

1. Introduction
The main purpose of this document is to test the detections, such as the MOSS and AI,
ensuring that they successfully detect collusion and AI generation on the students’
submissions. We will also test the terminal connections to ensure that students and
professors can access the SCORE platform through command line inputs.

2. Test Plan

The functional requirements from the SRS document will be tested using outlined test cases
before implementing them in the application. Those requirements include the MOSS
detection, AI detection, custom rubrics, importing rosters, exporting grades, and the Remote
Command Line Server Connection via HTTPS connection. That connection through the
terminal is also where we use test cases through the code written in Python.

3. Functional Test

 3.a Import Rosters

●​ Import CSV file: Professor can import a Canvas roster CSV file into a selected
class over HTTPS

○​ Test 1: On the web app, as a professor user, create a class, click the
import button, and upload a valid Canvas-exported CSV file. The roster
should be occupied with the students from the file.

○​ Test 2: On the HTTPS connection, as a professor user, send a POST
/class/{id}/roster request with a valid Canvas CSV file. The roster should
be occupied with the students from the file.

○​ Test 3: On the web app, as a professor user, upload a CSV file
containing a duplicate student already in the class roaster. The student
should not be duplicated in the roster.

○​ Test 4: On the web app, as a professor user, attempt to upload an invalid
file type. The system should reject the upload with an error message
displayed.

○​ Test 5: On the HTTPS connection, as a professor user, send a corrupted
CSV file. The system should reject the file with an error message
displayed.

○​ Test 6: On the web app, as a professor user, upload an empty CSV file.
The system should display an error message and not add any students.

○​ Test 7: On the HTTPS connection, as a professor user, attempt to send a
CSV import request without selecting a class. The system should reject
the request with an error message displayed.

 3.b Export Grades

●​ Export Grades CSV file: Professor can export student grades for a given
assignment in Canvas on a CSV format

○​ Test 1: On the web app, as a professor user, navigate to the assignment
page and click the Export Grades button. A CSV file should be created
containing all student grades for that assignment in the correct format for
Canvas.

○​ Test 2: On the HTTPS connection, as a professor user, send a GET
/assignment/{id}/grades/export request for a valid assignment. A CSV file
should return all the students’ grades on Canvas with the correct format.

○​ Test 3: On the web app, as a professor user, attempt to export grades for
an assignment that has no submissions. The system should still create a
CSV file with student names, but shows empty grade fields.

 3.c MOSS Similarity Detection

●​ MOSS API: Professors can use it to run similarity detection across submissions
with configurable similarity thresholds

○​ Test 1: On the web app, as a professor user, navigate to the assignment
page and click the Run Similarity Detection button. The system should
call the MOSS API and return similarity scores for all submissions.

○​ Test 2: On the HTTPS connection, as a professor user, send a POST
/assignment/{id}/similarity request with a valid threshold parameter. The
system should return similarity scores for all submissions in the
assignment.

○​ Test 3: On the web app, as a professor user, set a similarity threshold.
The system should flag all submissions with similarity above the
threshold as potential collusion.

○​ Test 4: On the HTTPS connection, as a professor user, send a request
with an invalid threshold input. The system should reject the request with
an error message displayed.

○​ Test 5: On the web app, as a professor user, run similarity detection on
an assignment with no submissions. The system should return a
message showing that there are no results displayed.

●​ MOSS Score visualization: Professor can view similarity scores in a matrix with
threshold-based color highlights

○​ Test 1: On the web app, as a professor user, run similarity detection on
an assignment with submissions. The system should display an n by n
matrix where rows and columns represent student names and cross
sections show similarity percentage.

○​ Test 2: On the web app, as a professor user, configure a similarity
threshold. The visualization should highlight scores above 80% in bright

red, scores below 20% in green, and values near 80% in shades of
yellow/orange.

○​ Test 3: On the web app, as a professor user, run similarity detection on
an assignment with only one student submission. The system should
display a matrix with one row and column, containing no similarity
values.

○​ Test 4: On the web app, as a professor user, run similarity detection with
multiple submissions where all scores are below the threshold. The
matrix should render all similarity values in shades of green.

○​ Test 5: On the web app, as a professor user, run similarity detection with
multiple submissions where all scores exceed the threshold. The matrix
should highlight those scores in shades of red.

○​ Test 6: On the HTTPS connection, as a professor user, send a GET
/assignment/{id}/similarity-visualization request. The system should
return JSON data representing the n by n matrix with similarity scores
and threshold-based highlight values.

 3.d AI Detection

●​ AI detection on submissions: Professors can use LLM model to detect the
possibility of AI-generated submissions

○​ Test 1: On the web app, as a professor user, navigate to the assignment
page and click the AI Detection button. The system should run the LLM
and return a table with each student’s probability percentage.

○​ Test 2: On the HTTPS connection, as a professor user, send a POST
/assignment/{id}/ai-detection request. The system should return a JSON
response plotting each student to their probability percentage.

○​ Test 3: On the web app, as a professor user, run AI detection on an
assignment with multiple submissions. The system should display a
table with all student names with each of their percentages.

○​ Test 4: On the HTTPS connection, as a professor user, send a request
for an assignment with no submissions. The system should display a
message “No submission available” with an empty result set.

 3.e Custom Rubrics

●​ Custom Rubric Creation: Professor can define grading rubrics with points and
penalties to the submissions

○​ Test 1: On the web app, as a professor user, navigate to an assignment
and input total points of one or higher. The system should save the rubric
with entered total points.

○​ Test 2: On the web app, as a professor user, assign points to individual
test cases. The rubric should save successfully and show the assigned
points for each test case.

○​ Test 3: On the web app, as a professor user, allocate more points to the
test case than the overall assignment total, such as extra credit. The
system should accept the rubric and save it correctly.

○​ Test 4: On the web app, as a professor user, allocate points for attempts,
compilation, and time limits. The rubric should save and apply these
factors in grading.

○​ Test 5: On the web app, as a professor user, configure late submission
penalties. The system should apply the penalty when submissions are
graded.

○​ Test 6: On the HTTPS connection, as a professor user, send a POST
/assignment/{id}/rubric request with valid rubric data. The system should
save the rubric and confirm success.

○​ Test 7: On the HTTPS connection, as a professor user, send a POST
/assignment/{id}/rubric request with invalid rubric data. The system
should reject the request with an error message.

4. User Test

​ 4.a HTTPS Connection

4.a.1 Professor

●​ Logs into the system through the terminal, which opens a browser
and authenticates the user through OAuth. The professor should be
able to view their list of classes, create a new class, and remove an
existing class. When the class is selected, the professor should
upload a CSV roster to add students. The professor should then
view the list of assignments, add a new assignment, remove an
assignment, and export the grades for an assignment in CSV
format to use in Canvas. The tester will be asked if they could
accomplish each task, and rank the ease of completing each task.

4.a.2 Student

●​ Logs into the system through the terminal, which opens a browser
and authenticates the user through OAuth. The student should view
their list of classes, select a class, and view the assignments for
that class. Upon selecting an assignment, the student should
review the displayed information about the requirements and due

dates, then submit a code solution as a file. After submission, the
student should check the status of their code to view their current
grade and feedback based on failed test cases. Then, the student
should make another submission so the new attempt overwrites the
previous submission. The tester will be asked if they could
accomplish each task, and rank the ease of completing each task.

​ 4.b Web App

4.a.1 Professor

●​ Log in to the system, navigate to a class, and ensure an option to
import rosters is on the created class page. Within the selected
assignment, the professor should confirm that rubric options are
available along with test cases, then click the Detect Similarities
button, enter a threshold, and view the visualization of MOSS
similarity scores. Then, the professor should click the Detect AI
button and verify that a probability score table is generated with
each student’s likelihood of AI-generated work. Finally, the professor
should export the grades for the assignment in CSV format. The
tester will be asked if they could accomplish each task, and rank the
ease of completing each task.

	Software Testing Plan
	
	1. Introduction

