
Software Requirements Specification

Student Code Online Review and
Evaluation (2.0)

S.C.O.R.E. (2.0) aims to enhance and extend the original S.C.O.R.E. application.
Adding functionality in server connections, grading with rubrics, and cheat

detections are all intentions to deploy the system into CSE classrooms.

Team Members

Dorothy Ammons - dammons2022@my.fit.edu
Patrick Kelly - pkelly2022@my.fit.edu
Shamik Bera - sbera2022@my.fit.edu

Rak Alsharif - ralsharif2021@my.fit.edu

Faculty Advisor and Client

Raghuveer Mohan

November 23, 2025

mailto:dammons2022@my.fit.edu
mailto:pkelly2022@my.fit.edu
mailto:sbera2022@my.fit.edu
mailto:ralsharif2021@my.fit.edu

Table of Contents
Table of contents - 1

1. Introduction

1.a Purpose

1.b Scope

1.c Definitions, acronyms and abbreviations

1.d References

1.e Overview

2. Overall Description -

2.a Product perspective

2.b Product functions

2.c User characteristics

2.d Operating Environment

2.e Constraints

2.f Assumptions and Dependencies

3. Requirements

3.a Functional requirements

3.b Interface Requirements

3.c Security requirements

1.​Introduction
a.​Purpose

The main purpose of this document is to show the requirements of the

novel features or functionalities of the Student Course Online Review Evaluation

(SCORE) platform during the development phase.

b.​Scope

The scope of the Student Course Online Review Evaluation (SCORE)

platform is to provide more capabilities to the current application, such as:

making it easier to detect cheating through AI and collusion, improving the

command line functionalities, and eventually implementing the application into

the Florida Tech CSE classrooms in order to gather feedback/suggestions from

students and professors.

c.​ Definitions, acronyms and abbreviations
●​ SFTP: Secure File Transfer Protocol
●​ Generative AI: Generative Artificial Intelligence
●​ MOSS: Measure of Software Similarity
●​ Flask: Web framework for python, used to build the API and handle

HTTP requests
●​ HTTPS: Hypertext Transfer Protocol Secure, communicates with

clients over the network to Flask
●​ CSV: Comma Separated Values, file type used to store text in

tables
●​ Canvas: Classrooms portal for Florida Institute of Technology

students and professors
●​ API: Application Programming Interface, allows communication

between software applications
●​ OAuth: Authorization protocol used to authorize users
●​ CLI client: Command Line Interface client, allows users to

communicate with client server through command line interface
d.​References

●​ MOSS: https://theory.stanford.edu/~aiken/moss/
●​ Flask: https://flask.palletsprojects.com/en/stable/
●​ OAuth: https://oauth.net/2/

https://theory.stanford.edu/~aiken/moss/
https://flask.palletsprojects.com/en/stable/
https://oauth.net/2/

e.​Overview
i.​ The overall objective of the Student Course Online Review

Evaluation (SCORE) is to expand its current functionalities by
implementing advanced cheating with AI and collusion detection,
improving accessibility for command line users, and integrating
feedback improvements from the students and professors.

2. Overall Description

a.​Product Perspective
i.​ This system is a follow-up to the previous S.C.O.R.E. project. The

program will add new functionalities and improvements to the
existing system. These enhancements will interact with the current
system’s architecture and framework while maintaining the same
look and feel of the previous version.

​ 2.b Product Functions

​ The main features of the application will be:

●​ Canvas integration
●​ Custom grading rubrics
●​ Visuals for cheat detections
●​ HTTPS connection access for off campus users

​
​ 2.c User Classes and Characteristics

​ Admin users will have access to all of the system files and are responsible for the
upkeep and maintenance of the program. Professors are users who will be able to
upload Canvas rosters to their classes, add custom rubrics to their assignments, export
grades from an assignment, and view visuals displaying various methods of integrity
violations, including: plagiarism, AI usage, and collusion. Students are users who will be
able to access the shell client off of campus.

​ 2.d Operating Environment
​

​ The system will operate through a serverless application hosted on Google Cloud
Run. Data storage for relational databases will be on Cloud SQL and Cloud Storage will
hold all submitted files and CSVs.
​

2.e Constraints

​ All additions must remain compatible with the current systems logic and
processes. Database space and speed must be managed as it is limited by Cloud SQL.
The execution of committed code is limited by lack of concurrency on isolated
containers.

​ 2.f Assumptions and Dependencies
​
​ Some product functionality relies on cooperation from the MOSS API to return
collusion reports. The running of the server relies heavily on the containers provided by
Google Cloud Run and is limited by its memory and processing speed. The relational
database is reliant on space and speed provided by Cloud SQL.

Requirements

 3.a Functional Requirements

​ 3.a.1 Import Rosters

​ After a professor creates their class on the web page, an import button allowing
the import of a CSV file will be prompted. For terminal users, “upload roster <file>”, after
selecting the class, will accept the CSV file. This CSV file should be directly exported
from a Canvas class roster. Then, all students on that file will be added to the roster
associated with that chosen class.

​ 3.a.2 Export Grades

​ At any point before or after an assignment is due, professors will have the option
to export the student grades for that assignment. The exported file will be in a CSV
format, in the style so that it may be directly uploaded to Canvas. On the web page, the

button to export grades will be present on the assignment page. Within the terminal,
“export grades” may be run after selecting an assignment in order to receive the CSV.

​ 3.a.3 MOSS Similarity Detection

​ At any point before or after an assignment is due, professors will have the option
to detect similarities between submissions. On the web page, this option is presented
with a button on the selected assignment page that will run the MOSS API across the
stored submissions. The professor also has the option to decide the threshold in which
similarity scores are considered cheating. For example: a professor may select 80%
similarity to be an indication of collusion. This is important for how the visualization is
performed.

​ 3.a.4 MOSS Score Visualization

​ After the “detect similarities” button is clicked, the information MOSS API returns
will be transformed and visualized for the professor’s view in two ways. The first visual
will be an n by n matrix, n being the number of students who submitted to the
assignment, where both the columns and rows contain are headed by the student’s
names. The cross sections will represent the similarity scores between those student’s
submissions. Scores will be highlighted in accordance with the selected or default
threshold, much higher than the threshold should be bright red, much lower than the
threshold should be bright green, and close to the threshold should be shades of yellow
or orange.

​ Example matrix:
​

 Josh Emma Brad

Josh N/A 90% 25%

Emma 90% N/A 40%

Brad 25% 40% N/A

​ The second visual will be clusters, where only the students whose submissions
were at or above the threshold are shown. This is to show professors if groups of
students have similar code, rather than one on one. A legend will be present to display
all the names of the students within each cluster.

​ Example Cluster Graph:

​ 3.a.5 AI Detection

​ At any point after an assignment’s creation, professors have the option to check
the submissions saved in the database for the probabilities that they are AI-generated.
The option is presented with a button on the assignment’s page. Once clicked, a hard
coded LLM will predict the probability that each submission was generated by AI in a
separate container. A table is then displayed with each student’s name next to their
probability percentages. Higher percentages indicate a bigger likelihood to be AI.

​ 3.a.6 Custom Rubrics
​
​ Once an assignment has been created, alongside the test cases, boxes for rubric
based scaling will be shown. A total points box will allow the input of whole numbers 1
and up. Each test case can be given its own number of points, a whole number 1 and
up (this can be higher than the overall points due to extra credit). Points may also be
allocated for attempt, compilation and time limits, within the same range. Point
reductions may be introduced for time limits and late submissions as well. The rubric will
be saved to the database and applied to all submissions for that assignment.

​ 3.a.7 Remote Command Line Server Connection

​ The system will provide access to an HTTPS connection to authenticated users
through the user’s terminal. This will allow users to perform terminal line commands that
directly use the functionality provided by the application. The CLI Client python file will
be provided in order to process commands smoothly.

●​ Example input
○​ python3 scoreportal.py login

●​ Example output
○​ File opens a browser window to complete Google OAuth

login
○​ Once logged in, access token is saved in CLI file
○​ Log in does not need to be repeated

●​ Example input (student)

○​ python3 scoreportal.py help
●​ Example output (student)

○​ Commands include:
○​ list classes
○​ select <class>
○​ list assignments
○​ select <assignment>
○​ submit <file>
○​ status <taskID>

●​ Example input (professor)

○​ python3 scoreportal.py help
●​ Example output (professor)

○​ Commands include:
○​ create class
○​ list classes
○​ select <class>
○​ delete <class>
○​ upload roster <file>
○​ create assignment
○​ list assignments
○​ select <assignment>
○​ delete <assignment>
○​ export grades

●​ Example input
○​ python3 scoreportal.py list classes

●​ Example output
○​ CSE4081 - Intro Ana of Algorithms
○​ CSE4101 - Computer Science Proj 1

●​ Example input

○​ python3 scoreportal.py select CSE4081
○​ python3 scoreportal.py list assignments

●​ Example output
○​ Binary Search Tree

●​ Example input

○​ python3 scoreportal.py select Binary Search Tree
○​ python3 scoreportal.py submit <file>
○​ python3 scoreportal.py status 1

●​ Example output
○​ Success! Submitted. Your task ID is: 1. Say “status 1” to

view results.
○​ Test case 1 failed: Check for leaf nodes with equal values.
○​ Grade: 9/10

All changes to the server database are processed through the connection with the Flask
API via HTTPS. As code submissions are made, they are added to a queue and users
are given a task ID. The code execution runs on a separate container so that the
executions are unable to clog requests to the main server. Then, that separate container
stores the results to the database. Users may request the status of their task using the
given ID in which the server queries the database to return if the task is still in progress
or if it is finished, in which the grade and test case failures are outprinted.

 3.b Interface Requirements
​
​ 3.b.1 Command Line Connection

​ All users can interact with the S.C.O.R.E. (2.0) application through command line
operations that communicate with the main server and databases through HTTPS.

Student Functionality

●​ Students are able to log into the system through the terminal, which will
open a browser and authenticate their user through OAuth.

●​ The student’s list of classes is retrieved and available to view at any time.
●​ To reach the assignments of a specific class, students are able to select

that class.
●​ Once a class is selected, students are able to view the class’s

assignments.
●​ Assignments are able to be selected at which point information about

assignment expectations and due dates are outprinted.
●​ Within the selected assignment, students are able to submit their code

solutions as a file.
●​ After making a submission, students may check the status of their code in

order to receive their current grade and advice towards their code based
on failed test cases.

●​ Any further submissions towards the same assignment will erase previous
attempts.

Professor Functionality

●​ Professors are able to log into the system through the terminal, which will
open a browser and authenticate their user through OAuth.

●​ The professor’s list of classes is retrieved and available to view at any
time.

●​ New classes can be created, and existing classes can be removed.
●​ Within a selected class, professors are able to upload a CSV roster in

order to add students.
●​ Professors can view their full list of assignments.
●​ Assignments may be added or removed from a class.
●​ At any time, professors are able to export the grades for an assignment in

CSV format for use in Canvas.​
​

​ 3.b.2 Web Application

​ All changes to the web application brought forth by S.C.O.R.E. (2.0) are relative
to the professor’s views and functionalities. This includes:

●​ Rubric options will be available on the assignment page alongside the test
cases (see 3.a.6 for more details).

●​ Visualizations of MOSS similarity scores will be shown after the professor
clicks the “detect similarities” button and enters an optional threshold, all
on the page of a selected assignment (see 3.a.4 for more details).

●​ An AI probability score table will be generated if the professor clicks the
“detect AI” button, also on the selected assignment’s page (see 3.a.5 for
more details).

●​ An option to import rosters will be present on the class-creation page (see
3.a.1 for more details).

●​ An option to export grades will be present on the selected assignment
page (see 3.a.2 for more details).

 3.c Security Requirements

​ 3.c.1 User Authentication

​ All users must be authenticated through Google OAuth and subsequently
TRACKS, while using their Florida Institute of Technology email address and password.
In order to be added to a class, that authenticated email associated with the user must
match the email associated with their Canvas account. This authentication will also aid
in establishing professor and student roles.

​ 3.c.2 CLI Connections

​ All data delivered over the CLI client connection will be processed through
HTTPS communications.

​ 3.c.3 Contarization

​ Code will be run in isolated containers to ensure they do not interfere with main
server processes as well as maintaining effective concurrent connections.

​ 3.c.4 Data Deletion

​ After an assignment or class is removed, all data related to submissions or
rosters (in the case of class deletion) will be removed.

​

	Software Requirements Specification
	
	
	Table of Contents
	1.​Introduction
	Student Functionality
	Professor Functionality
	●​Professors are able to log into the system through the terminal, which will open a browser and authenticate their user through OAuth.

