
Student Code Online
Review and Evaluation 2.0

TEAM: SHAMIK BERA, DOROTHY AMMONS, PATRICK KELLY, RAK ALSHARIF
ADVISOR/CLIENT: RAGHUVEER MOHAN

Table of Contents
• Goals

• Motivations

• Approach

• Novel features/functionalities

• Algorithms and Tools

• Technical Challenges

• Milestones 1, 2, and 3

• Task matrix for Milestone 1

Goals
Increase the capabilities of the current S.C.O.R.E. application
● Integrate the application with Canvas
● Add detection for cheating and plagiarism
● Improve the shell client for users off campus

Classroom deployment
● Allow current FIT CSE classes to use the web application
● Collect feedback from professors and students
● Make improvements based on suggestions

Motivations
With the current S.C.O.R.E. application, professors are unable to
• Enter grades directly to Canvas
• Check for plagiarism, AI usage, or collusion
• Add custom rubrics for grade penalties, such as late scores

Students are unable to
• Use the shell client off campus

Approach
Canvas Integration
 Professor

• View Canvas rosters on
S.C.O.R.E..

• Submit the S.C.O.R.E. grades and
feedback directly to canvas

• Apply custom rubrics

Shell client
Students

● Access the shell client off
campus

Approach [Cont.]

Stanford MOSS Integration
 Professor

● View every submission’s MOSS
collusion score

● View similarities between
S.C.O.R.E. submissions

Generative AI and Plagiarism Detection
 Professor

● View similarity scores for every
submission compared to generative AI

● View plagiarism scores for online
resources

Novel features/functionalities

Semi-automated rubric based grading
• The current web application and those similar do not allow for custom rubrics

Plagiarism, AI, and collusion detection visualization
• Kattis and other program problem platforms do not check for the use of AI,

plagiarism, or similarities between submissions
• Very few applications, if any, present similarity scores for large volumes of

submissions in a way that is both efficient and easy to interpret

Potential Tools

Full Stack:
• MongoDB
• Express
• React
• Node JS

API:
• Canvas
• MOSS
• TRACKS

Languages:
• Rust
• Python

Other third party software tools:
• Django: Front end
• AWS Cloud Services
• SFTP
• OAuth

Technical Challenges

• MOSS API integration
• Clustering algorithms for visualizing MOSS scores
• Canvas integration

Milestones 1, 2, and 3
Milestone 1 (Sept 29):
• Meet with previous team about their work for their

project.
• Understand the current S.C.O.R.E application and their

tools used.
• Research and compare new tools for MOSS API
• Meet with Dr. White to discuss clustering and

visualization techniques
• Create a requirement document, design document, and

test plan

Milestones 1, 2, and 3 [Cont.]

Milestone 2 (Oct 27):
• Test MOSS AI and similarity detection
• Understand and test clustering algorithms
• Draft and test matrix views for visualizing

MOSS data

Milestone 1, 2, and 3 [Cont.]

Milestone 3 (Nov 24):
• Implement the MOSS matrix views in S.C.O.R.E.
• Integrate Canvas classes, rosters, assignments, and rubrics into S.C.O.R.E.
• Implement S.C.O.R.E. grades into Canvas
• Test those integrated features

Task Matrix for Milestone 1
Task Dorothy Patrick Shamik Rak

Familiarize with
previous project

25% 25% 25% 25%

Research the old
tools

25% 25% 25% 25%

Research new tools 5%;
Clustering Research
with White 20%

25% 5%;
Clustering Research
with White 20%

25%

Requirement
Document

Finalize 45% Finalize 45% Draft 5% Draft 5%

Design Document Models 20% Models 20% Draft 15% Models 45%

Test Plan 15% 15% 45% 25%

Questions?

