Student Code Online Review and
Evaluation 2.0

Team: Shamik Bera, Dorothy Ammons, Patrick Kelly, Rak Alsharif
Advisor/Client: Raghuveer Mohan



Table of Content

» Milestone 2

* Milestone 2 - Completion Matrix

* Replacing the backend

» Replacing the backend (Demo)
 Firestore Database

» Replacing Rust server with Python
» LLM for detecting Al usage

« MOSS Similarity Data from Prototype
* MOSS Similarity Matrix Demo

* Integration and Next Steps

* Milestone 3 - Task Matrix



Milestone 2

» Replace the backend with Flask and Firebase
* Create the CLI Client file to interact with the Google Cloud

Run server from the command line terminal
 Create and test LLM for Al detections
* Create visuals for Al detection
* Build and test MOSS integration



Milestone 2 — Completion Matrix

Task Dorothy Patrick Shamik Rak To Do

1. Replace 80% 0% 0% 0% Finish endpoints for processing
frontend/backend with test cases

Flask and Firestore

2. Replace rust server 0% 10% 70% 0% Create the CLI Client file

with Python

3. Add Al detection page | 0% 0% 0% 5% Add the buttons and page(s) for
to website without the Al detection

functionality

4. Create and test LLM | 0% 0% 0% 90% Continue refining accuracy and
for Al detections model evaluation

5. Create visuals for Al 0% 0% 0% 30% Create visuals from the LLM
detections results

6. Built and tested 0% 100% 0% 0% Integrate into grading pipeline for

MOSS integration with
Matrix

Milestone 3 and connect to
frontend for visualization




Replacing the backend

This task involved replacing the Node.js and MongoDB backend files with Flask
and Firestore.

Created the Firestore database and bucket

Replaced all of the endpoints with Flask endpoints

Connected the endpoints to the database

Kept the file structure and interaction with React + Vite frontend the same
Modified some of the front end files to save and send data in formats that
worked more efficiently with Firestore



Replacing the backend (DEMQ)



http://www.youtube.com/watch?v=PmYtsjz3lfs

Firestore Database

The Firestore database currently stores users and courses separately,
this is for debugging purposes only, so that each one of our group
members can interact with every course and test collaboratively.

<+ Start collection
Users

assignments
Courses

email: "projectscore2.0@gmail.com’

name: "Project’ + Add field

type: ‘professor” course_id: "COURSE1001"

name : "Professor Score”

published: true

students: |[|



Firestore Database [Cont]

Assignments Test cases

brief: "testing" testcases
description: “testing” )

due_date: "2025-10-28" custom: false

published: true diff: false

testcases: [{diff: false, custom: fal..] feedback: “yap"

title: ‘Test’ input: “testing”
output: “testing”

visible: true




Replacing Rust server with Python

Converted the server in Rust into Python with Flask
REST endpoints are being used instead of listening for
raw TCP connections and parsing custom text
commands.

On port 12345, it uses Flask web server instead of the
TcpListener.

Connected the commands to the Backend



LLM for Detecting Al Usage

e Developed and tested the initial LLM-based Al detection
module for S.C.O.R.E. (2.0).

e Built a Python model that analyzes code submissions and
predicts how likely they are Al-generated.

e Implemented feature extraction functions that measure
comment ratio, line length, indentation depth, and
Al-related patterns.



LLM for Detecting Al Usage [Cont]

e Created and tested a Flask API endpoint
(/detect/ai) to return probability and label
(“Al” or “Human”).

e Prepared data structure and output format
for future web integration and visualization.



MQOSS Similarity Detection Prototype

Goal: Goal: Add a system that can compare student submissions and detect
code similarities automatically.

Built a Python tool that checks similarity between code files and creates a results matrix.
Added a backend route (/api/moss/demo) so the website can request and show the results
Tested the System with sample files which generated working percentage results

Outcome: The backend can now generate and and return similarity data that
will be implemented into the main grading system



{

}

Moss Similarity Matrix Demo

"matrix": [

"students": [
"alice.py",
||b°b'pyu .
"carol.py"

]

The demo output lists each file (alice.py, bob.py, carol.py) and a
matrix of percentage values.
Each number shows how similar one file's code is to another.
« For example, alice.py and bob.py share 68% similarity,
while bob.py and carol.py share 58.5%.

A value of 0.0 means it's comparing the same file to itself.



Integration and Next Steps

Integration Work:
e Connected the MOSS tool into the backend structure and added a health check route for testing.
e Linked it with existing AutoTest and Auto Feedback setup for smoother future use.

e \Verified all routes with live curl testing to confirm the backend is functioning properly.

Next Steps:
e Connect to the official MOSS API for real comparisons.
e Store similarity data in the database for instructors to review.

e Add a simple results page in the frontend to display the similarity table.



Milestone 3 — Task Matrix

Task Dorothy Patrick Shamik Rak
1. Finalize backend and databases 100% 0% 0% 0%
2. Set up hosting with Google Cloud | 100% 0% 0% 0%
Run

3. Add the LLM for Al detection to the | 0% 0% 0% 100%
web application

4. Add the MOSS functionality to the | 0% 100% 0% 0%
web application

5. Add the rubric page and 25% 25% 25% 25%
functionality

6. Add the import functionality for 0% 0% 100% 0%
rosters

7. Add the export functionality for 0% 0% 100% 0%

grades




Questions?



