
Student Code Online Review and 
Evaluation 2.0

Team: Shamik Bera, Dorothy Ammons, Patrick Kelly, Rak Alsharif 
Advisor/Client: Raghuveer Mohan 



Table of Content

• Milestone 2 
• Milestone 2 - Completion Matrix
• Replacing the backend
• Replacing the backend (Demo)
• Firestore Database
• Replacing Rust server with Python
• LLM for detecting AI usage
• MOSS Similarity Data from Prototype
• MOSS Similarity Matrix Demo
• Integration and Next Steps
• Milestone 3 - Task Matrix



Milestone 2

• Replace the backend with Flask and Firebase
• Create the CLI Client file to interact with the Google Cloud 

Run server from the command line terminal
• Create and test LLM for AI detections
• Create visuals for AI detection
• Build and test MOSS integration



Milestone 2 – Completion Matrix

Task Dorothy Patrick Shamik Rak To Do

1. Replace 
frontend/backend with 
Flask and Firestore 

80% 0% 0% 0% Finish endpoints for processing 
test cases

2. Replace rust server 
with Python

0% 10% 70% 0% Create the CLI Client file 

3. Add AI detection page 
to website without 
functionality

0% 0% 0% 5% Add the buttons and page(s) for 
the AI detection

4. Create and test LLM 
for AI detections

0% 0% 0% 90% Continue refining accuracy and 
model evaluation

5. Create visuals for AI 
detections

0% 0% 0% 30% Create visuals from the LLM 
results

6. Built and tested 
MOSS integration with 
Matrix

0% 100% 0% 0% Integrate into grading pipeline for 
Milestone 3 and connect to 
frontend for visualization



Replacing the backend 

This task involved replacing the Node.js and MongoDB backend files with Flask 
and Firestore. 

• Created the Firestore database and bucket
• Replaced all of the endpoints with Flask endpoints
• Connected the endpoints to the database
• Kept the file structure and interaction with React + Vite frontend the same
• Modified some of the front end files to save and send data in formats that 

worked more efficiently with Firestore



Replacing the backend (DEMO)

http://www.youtube.com/watch?v=PmYtsjz3lfs


Firestore Database

The Firestore database currently stores users and courses separately, 
this is for debugging purposes only, so that each one of our group 
members can interact with every course and test collaboratively. 

Users 
Courses



Firestore Database [Cont]

Assignments Test cases



Replacing Rust server with Python

• Converted the server in Rust into Python with Flask
• REST endpoints are being used instead of listening for 

raw TCP connections and parsing custom text 
commands.

• On port 12345, it uses Flask web server instead of the 
TcpListener.

• Connected the commands to the Backend



LLM for Detecting AI Usage

● Developed and tested the initial LLM-based AI detection 
module for S.C.O.R.E. (2.0).

● Built a Python model that analyzes code submissions and 
predicts how likely they are AI-generated.

● Implemented feature extraction functions that measure 
comment ratio, line length, indentation depth, and 
AI-related patterns.



LLM for Detecting AI Usage [Cont]

● Created and tested a Flask API endpoint 
(/detect/ai) to return probability and label 
(“AI” or “Human”).

● Prepared data structure and output format 
for future web integration and visualization.



MOSS Similarity Detection Prototype

Goal: Goal: Add a system that can compare student submissions and detect 
code similarities automatically.

• Built a Python tool that checks similarity between code files and creates a results matrix.
• Added a backend route (/api/moss/demo) so the website can request and show the results
• Tested the System with sample files which generated working percentage results

Outcome: The backend can now generate and and return similarity data that 
will be implemented into the main grading system



Moss Similarity Matrix Demo 

• The demo output lists each file (alice.py, bob.py, carol.py) and a 

matrix of percentage values.

• Each number shows how similar one file’s code is to another.

• For example, alice.py and bob.py share 68% similarity, 

while bob.py and carol.py share 58.5%.

• A value of 0.0 means it’s comparing the same file to itself.



Integration and Next Steps

Integration Work:

● Connected the MOSS tool into the backend structure and added a health check route for testing.

● Linked it with existing AutoTest and Auto Feedback setup for smoother future use.

● Verified all routes with live curl testing to confirm the backend is functioning properly.

Next Steps:

● Connect to the official MOSS API for real comparisons.

● Store similarity data in the database for instructors to review.

● Add a simple results page in the frontend to display the similarity table.



Milestone 3 – Task Matrix

Task Dorothy Patrick Shamik Rak

1. Finalize backend and databases 100% 0% 0% 0%

2. Set up hosting with Google Cloud 
Run

100% 0% 0% 0%

3. Add the LLM for AI detection to the 
web application

0% 0% 0% 100%

4. Add the MOSS functionality to the 
web application

0% 100% 0% 0%

5. Add the rubric page and 
functionality

25% 25% 25% 25%

6. Add the import functionality for 
rosters

0% 0% 100% 0%

7. Add the export functionality for 
grades

0% 0% 100% 0%



Questions?


