
Student Code Online 
Review and Evaluation 2.0

TEAM: SHAMIK BERA, DOROTHY AMMONS, PATRICK 
KELLY, RAK ALSHARIF 

ADVISOR/CLIENT: RAGHUVEER MOHAN 



Table of Contents

● Milestone 1
● Milestone 1 - Completion Matrix
● Software Testing Plan
● Software Specification Requirements
● Software Design Document
● Milestone 2 - Task Matrix



Milestone 1

● Meet with previous team to discuss their work for the project
● Understand the current S.C.O.R.E. application
● Understand the current tools used in the S.C.O.R.E. application
● Research and compare new tools, focusing on the MOSS API
● Create a requirement document
● Create a design document
● Create a test plan



Milestone 1 - Completion Matrix
Task Completion % Dorothy Patrick Shamik Rak To do

1. Investigate 
new tools

100% 60% 40% 0% 0%

2. Investigate 
old tools

70% 50% 20% 0% 0% Familiarize 
ourselves with 
rust and 
MongoDB

3. Investigate 
current system

100% 70% 20% 10% 0%

4. Requirement 
Document

100% 80% 0% 20% 0%

5. Test Plan 100% 5% 5% 90% 0%

6. Design 
Document

100% 95% 0% 5% 0%



Technical Tools

Flask -

Frontend/Backend

Controls requests and deliverables

Firebase -

Cloud database containing user data, submissions data, assignments data, etc.

Cloud Storage -

Cloud space to hold program files 



Technical Tools [Cont]

Google Cloud Run -

Always free version

Hosts website and processes HTTPS connections

CLI Client -

Processes commands from the terminal to the Flask API (in the Google Cloud 
Run Container) via HTTPS



Technical Challenges

Resolved -

Canvas API

● Instead, we will allow imports of CSV files from Canvas for rosters and export CSV files for 
grades to be uploaded to Canvas

Unresolved -

MOSS API 

● We are waiting on access to the API to begin working with it

Clustering Algorithms

● We have a better understanding of how we want our MOSS scores to be visualized but have 
yet to work with Professor White on determining a good algorithm



Software Requirements 
Specifications



Functional Requirements

● Import Rosters
○ Upload a CSV from a Canvas roster to add all the student names to the roster of the created 

SCORE(2.0) class
● Export Grades

○ Professors export student grades for a particular assignment to CSV file, for upload to Canvas
● MOSS Similarity Detection

○ A button that can run the MOSS API across submissions and set similarity score thresholds
○ A matrix will all the similarity detections between students will be displayed or available for 

download and a cluster graph will be generated
● AI Detection

○ Probability of each submission generated by AI is predicted by hard coded LLM and those above the 
selected threshold will be displayed in a table

● Custom Rubrics
○ Each test case is worth a set number of points 
○ Points can be dedicated for runtime, compilation, and attempt out of a selected total points
○ Points can be deducted for late submissions



Interface Requirements

HTTPS
● All users can connect with command 

line operations to interact with SCORE 
2.0 platform

● Students can log into SCORE(2.0) 
through terminal to navigate classes 
and assignments, submit their code, 
and receive feedback

● Professors can also log into 
SCORE(2.0) through terminal to upload 
rosters, export grades, and add or 
remove assignments and classes

Web App

● SCORE 2.0 brings all changes to the web 
application relative to professor’s views 
and functionalities 

● Professors have the ability to click on 
“detect similarities” and “detect AI” button 
along with exporting grades and creating 
rosters



Security Requirements

● User Authentication
○ Has to be authenticated through Google OAuth which uses TRACKS

● CLI Connection
○ File that connects commands from the terminal to the Flask system via HTTPS

● Contarization
○ Ensures that code will run in isolated containers to prevent interfering with main 

server processes
● Data Deletion

○ Removing assignment or class deletes all data related to submissions or rosters



Software Testing Plan



Functional Test

● Covers all the functional requirements with test cases in details 
● Each test case demonstrates the professor of using SCORE 2.0 application 

through the terminal via HTTPS connection and web application
● Test cases also shows scenarios where the professors puts an incorrect 

input and it would display an error message with rejections from the system



User Test
● HTTPS Connection

- The professors log into the system through terminal where the professors 
can select, add, and remove a class, import roasters, and export grades in a 
CSV format.

- The students also log into the system through terminal to open the existing 
class, open up the posted assignments and submit their code files with test 
cases and feedback.

● Web Application

- The professors log into the platform to import rosters on the class page 
and create rubrics on assignments, detect MOSS similarities and detect AI 
on the students’ submissions.



Software Design Document



System Architecture



UML - Generalized Database



Terminal-Side System Architecture



Mockup - Rubric Addition



Mockup - Rubric Addition Pt.2



Mockup - Detect AI, Detect Collusion, Export 
Grades Features



Mockup - Detect AI, Detect Collusion, Export 
Grades Features Pt.2



Milestone 2 - Task Matrix

Task Dorothy Patrick Shamik Rak

1. Replace 
frontend/backend with 
Flask and MySQL

100% 0% 0% 0%

2. Replace rust server 
with Python

0% 0% 100% 0%

3. Add MOSS page to 
website without 
functionality

0% 0% 0% 100%

4. Test MOSS detections 0% 100% 0% 0%

5. Determine and test 
clustering algorithms

25% 25% 25% 25%



Questions?


