Student Code Online
Review and Evaluation 2.0

TEAM: SHAMIK BERA, DOROTHY AMMONS, PATRICK
KELLY, RAK ALSHARIF
ADVISOR/CLIENT: RAGHUVEER MOHAN

Table of Contents

Milestone 1

Milestone 1 - Completion Matrix
Software Testing Plan

Software Specification Requirements
Software Design Document
Milestone 2 - Task Matrix

Milestone 1

Meet with previous team to discuss their work for the project
Understand the current S.C.O.R.E. application

Understand the current tools used in the S.C.O.R.E. application
Research and compare new tools, focusing on the MOSS API
Create a requirement document

Create a design document

Create a test plan

Milestone 1 - Completion Matrix

Document

Task Completion % | Dorothy Patrick Shamik Rak To do

1. Investigate 100% 60% 40% 0% 0%

new tools

2. Investigate 70% 50% 20% 0% 0% Familiarize

old tools ourselves with
rust and
MongoDB

3. Investigate 100% 70% 20% 10% 0%

current system

4. Requirement | 100% 80% 0% 20% 0%

Document

5. Test Plan 100% 5% 5% 90% 0%

6. Design 100% 95% 0% 5% 0%

Technical Tools

Flask -

Frontend/Backend

Controls requests and deliverables
Firebase -

Cloud database containing user data, submissions data, assignments data, etc.

Cloud Storage -

Cloud space to hold program files

Technical Tools [Cont]

Google Cloud Run -

Always free version

Hosts website and processes HTTPS connections
CLI Client -

Processes commands from the terminal to the Flask API (in the Google Cloud
Run Container) via HTTPS

Technical Challenges

Resolved -
Canvas API

e Instead, we will allow imports of CSV files from Canvas for rosters and export CSV files for
grades to be uploaded to Canvas

Unresolved -
MOSS API
e We are waiting on access to the API to begin working with it
Clustering Algorithms

e We have a better understanding of how we want our MOSS scores to be visualized but have
yet to work with Professor White on determining a good algorithm

Software Requirements
Specifications

Functional Requirements

Import Rosters
o Upload a CSV from a Canvas roster to add all the student names to the roster of the created
SCORE(2.0) class

Export Grades
o Professors export student grades for a particular assignment to CSV file, for upload to Canvas

MOSS Similarity Detection
o A button that can run the MOSS API across submissions and set similarity score thresholds
o A matrix will all the similarity detections between students will be displayed or available for
download and a cluster graph will be generated
Al Detection
o Probability of each submission generated by Al is predicted by hard coded LLM and those above the
selected threshold will be displayed in a table
Custom Rubrics
o Eachtest case is worth a set number of points
o Points can be dedicated for runtime, compilation, and attempt out of a selected total points
o Points can be deducted for late submissions

Interface Requirements

HTTPS

All users can connect with command
line operations to interact with SCORE
2.0 platform

Students can log into SCORE(2.0)
through terminal to navigate classes
and assignments, submit their code,
and receive feedback

Professors can also log into
SCORE(2.0) through terminal to upload
rosters, export grades, and add or
remove assignments and classes

Web App

SCORE 2.0 brings all changes to the web
application relative to professor’s views
and functionalities

Professors have the ability to click on
“detect similarities” and “detect Al” button
along with exporting grades and creating
rosters

Security Requirements

e User Authentication
o Has to be authenticated through Google OAuth which uses TRACKS

e CLI Connection
o File that connects commands from the terminal to the Flask system via HTTPS
e (Contarization

o Ensures that code will run in isolated containers to prevent interfering with main
server processes

e Data Deletion
o Removing assignment or class deletes all data related to submissions or rosters

Software Testing Plan

Functional Test

e Covers all the functional requirements with test cases in details

e Each test case demonstrates the professor of using SCORE 2.0 application
through the terminal via HTTPS connection and web application

e Test cases also shows scenarios where the professors puts an incorrect
input and it would display an error message with rejections from the system

User Test

e HTTPS Connection

- The professors log into the system through terminal where the professors
can select, add, and remove a class, import roasters, and export grades in a
CSV format.

- The students also log into the system through terminal to open the existing
class, open up the posted assignments and submit their code files with test
cases and feedback.

e Web Application

- The professors log into the platform to import rosters on the class page
and create rubrics on assignments, detect MOSS similarities and detect Al
on the students’ submissions.

Software Design Document

System Architecture

Containerized Backend

Handle Responses
Client-side Frontend and Requests

_— — Container

. Webpage Interface

/" Cloud Storage \\ Firebase ‘
= B - . -CodeFiles- '~ Database

Terminal —_ [cu

Execute Code and
Process Test Cases
Container

\

\

UML - Generalized Database

name: String
id: Int
email: String

Professor

name: String
id: Int

email: String

Submission

» | path: FilePath

| timestamp: DateTime
submitter: Student.id
status: String
grade: Float

— id:

Int

—

Class

name: String
id: Int

Assignment

title: String
content: String
dueDate: DateTime
id: Int

Test _Cases ‘ Feedback
* | input: String 1 1 | feedback: String
~— expectedOutput: String ——— id: Int
id: Int
points: Int
pass: Bool \
Rubric

totalPoints: Int
daysLate: Int
runTime: Int
compilation: Int
attempt: Int

id: Int

N—

Terminal-Side System Architecture

Terminal CLI Client Flask SCORE(2.0)

Command : HTTPS

Mockup - Rubric Addition

%“% S.C.O.R.E

Assignment Name: :] Due Date: |mm/dd/yyyy D‘

y Number of Attempts: | Unlimited ‘

Test Cases

2N

Input Output Feedback " Points \Verifier Visibility

 Uload nput Upload Output o e
Custom Hidden

e

+ Test Case

Mockup - Rubric Addition Pt.2

<P

S.C.O.R.E
B o ..

Rubric for Assighment <Title>

Factors Points

Total:

Compilation:

Attempt:

Under __ seconds:

After __ days, remove:

Submit Rubric

Mockup - Detect Al Detect Collusion, Export

Grades Features

% S.C.O.R.E

Demo Submissions

Student Name Student Email

Firstname Lastname exampleemail@gmail.com

Numeric Grade
2/2

Run Al Checker Run Similarity Scores

Export Grades

Mockup - Detect Al Detect Collusion, Export
Grades Features Pt.2

Run Al Checker Run Similarity Scores

Run Al Checker Run Similarity Scores [‘] Run

(;] D (O Download Full Matrix

(O Load Clusters Graph

Milestone 2 - Task Matrix

Task Dorothy Patrick Shamik Rak

1. Replace 100% 0% 0% 0%
frontend/backend with
Flask and MySQL

2. Replace rust server 0% 0% 100% 0%
with Python
3. Add MOSS page to 0% 0% 0% 100%

website without
functionality

4. Test MOSS detections | 0% 100% 0% 0%

5. Determine and test 25% 25% 25% 25%
clustering algorithms

Questions?

